Attività

  • dimensec ha inviato un aggiornamento 1 anno, 9 mesi fa

    A screw and a bolt are similar types of fastener typically made of metal and characterized by a helical ridge, called a male thread (external thread). Screws and bolts are used to fasten materials by the engagement of the screw thread with a similar female thread (internal thread) in a matching part. Screws are often self-threading (also known as self-tapping) where the thread cuts into the material when the screw is turned, creating an internal thread that helps pull fastened materials together and prevents pull-out. There are many screws for a variety of materials; materials commonly fastened by screws include wood, sheet metal, and plastic. Early wood screws were made by hand, with a series of files, chisels, and other cutting tools, and these can be spotted easily by noting the irregular spacing and shape of the threads, as well as file marks remaining on the head of the screw and in the area between threads. Many of these screws had a blunt end, completely lacking the sharp tapered point on nearly all modern wood screws. Eventually, lathes were used to manufacture wood screws, with the earliest patent being recorded in 1760 in England. During the 1850s, swaging tools were developed to provide a more uniform and consistent thread. Screws made with these tools have rounded valleys with sharp and rough threads. Some wood screws were made with cutting dies as early as the late 1700s (possibly even before 1678 when the book content was first published in parts). Once screw turning machines were in common use, most commercially available wood screws were produced with this method. These cut wood screws are almost invariably tapered, and even when the tapered shank is not obvious, they can be discerned because the threads do not extend past the diameter of the shank. Such screws are best installed after drilling a pilot hole with a tapered drill bit. The majority of modern wood screws, except for those made of brass, are formed on thread rolling machines. These screws have a constant diameter, threads with a larger diameter than the shank, and are stronger because the rolling process does not cut the grain of the metal and can be used as furniture screws.

    Bolts have been defined as headed fasteners having external threads that meet an exacting, uniform bolt thread specification (such as ISO metric screw thread M, MJ, Unified Thread Standard UN, UNR, and UNJ) such that they can accept a non-tapered nut . Screws are then defined as headed, externally threaded fasteners that do not meet the above definition of bolts. These definitions of screw and bolt eliminate the ambiguity of the Machinery’s handbook distinction. And it is for that reason, perhaps, that some people favor them . However, they are neither compliant with common usage of the two words nor are they compliant with formal specifications. A possible distinction is that a screw is designed to cut its own thread; it has no need for access from or exposure to the opposite side of the component being fastened to. This definition of screw is further reinforced by the consideration of the developments of fasteners such as Tek Screws, with either round or hex heads, for roof cladding, furniture self-drilling screws and furniture self-tapping screws for various metal fastening applications, roof batten screws to reinforce the connection between the roof batten and the rafter, decking screws etc. On the other hand, a bolt is the male part of a fastener system designed to be accepted by a pre-equipped socket (or nut) of exactly the same thread design.

    A self-tapping screw is a screw that can tap its own hole as it is driven into the material. More narrowly, self-tapping is used only to describe a specific type of thread-cutting screw intended to produce a thread in relatively soft material or sheet materials, excluding wood screws. Other specific types of self-tapping screw include self-drilling screws and thread rolling screws. Self-tapping screws have a wide range of tip and thread patterns, and are available with almost any possible screw head design. Common features are the screw thread covering the whole length of the screw from tip to head and a pronounced thread hard enough for the intended substrate, often case-hardened. For hard substrates such as metal or hard plastics, the self-tapping ability is often created by cutting a gap in the continuity of the thread on the screw, generating a flute and cutting edge similar to those on a tap. Thus, whereas a regular machine screw cannot tap its own hole in a metal substrate, a self-tapping one can (within reasonable limits of substrate hardness and depth).

    A nut is a type of fastener with a threaded hole. Nuts are almost always used in conjunction with a mating bolt to fasten multiple parts together. The two partners are kept together by a combination of their threads’ friction (with slight elastic deformation), a slight stretching of the bolt, and compression of the parts to be held together. In applications where vibration or rotation may work a nut loose, various locking mechanisms may be employed: lock washers, jam nuts, eccentric double nuts, specialist adhesive thread-locking fluid such as Loctite, safety pins (split pins) or lockwire in conjunction with castellated nuts, nylon inserts (nyloc nut), or slightly oval-shaped threads. The most common shape today is hexagonal, for similar reasons as the bolt head: six sides give a good granularity of angles for a tool to approach from (good in tight spots), but more (and smaller) corners would be vulnerable to being rounded off. It takes only one sixth of a rotation to obtain the next side of the hexagon and grip is optimal. However, polygons with more than six sides do not give the requisite grip and polygons with fewer than six sides take more time to be given a complete rotation. Other specialized shapes exist for certain needs, such as wingnuts for finger adjustment and captive nuts (e.g. cage nuts) for inaccessible areas, both of which can be used as furniture nuts.

    Casters are a general term, including movable casters, fixed casters and movable casters with brakes. The movable caster is also called the universal wheel, its structure allows 360-degree rotation; the fixed caster is also called the directional caster, it has no rotating structure and cannot be rotated. Usually two kinds of casters are used in combination. For example, the structure of the trolley is two directional wheels in the front, and two universal wheels in the back near the push armrest. There are casters of various materials, such as pp casters, PVC casters, PU casters, cast iron casters, nylon casters, TPR casters, iron core nylon casters, iron core PU casters, etc. Casters are used in numerous applications, including shopping carts, office chairs, toy wagons, hospital beds, and material handling equipment. High capacity, heavy duty casters are used in many industrial applications, such as platform trucks, carts, assemblies, and tow lines in plants.

    Industrial casters are heavy duty casters that are designed to carry heavy loads, in some cases up to thirty thousand pounds. An Industrial caster may have either a swivel or rigid caster design. Industrial casters typically have a flat top plate that has four bolt holes to ensure a sturdy connection between the top plate and the load. They are used in a variety of applications including dolly carts, assembly turntables, heavy duty storage racks, holding bins, tow lines, maintenance equipment, and material handling mechanisms. In early manufacturing, industrial caster bodies were typically fabricated from three separate, stamped metal parts, which were welded to the top plate. Today, many industrial caster bodies are made by laser cutting the body from a single metal blank and then using a press brake to shape the legs to the required ninety degree angle, thus producing a mechanically stronger device. Various factors affect industrial caster performance. For example, larger wheel diameters and widths provide higher weight capacity by distributing the load’s weight across a larger wheel surface area. Also, harder wheel materials (e.g., cast iron, high profile polyurethane) are less sensitive to and tend to not track dirt and debris on floors.

    http://www.zinhardware.com